Activity patterns and synaptic organization of ventrally located interneurons in the embryonic chick spinal cord.

نویسندگان

  • A Ritter
  • P Wenner
  • S Ho
  • P J Whelan
  • M J O'Donovan
چکیده

To investigate the origin of spontaneous activity in developing spinal networks, we examined the activity patterns and synaptic organization of ventrally located lumbosacral interneurons, including those whose axons project into the ventrolateral funiculus (VLF), in embryonic day 9 (E9)-E12 chick embryos. During spontaneous episodes, rhythmic synaptic potentials were recorded from the VLF and from spinal interneurons that were synchronized, cycle by cycle, with rhythmic ventral root potentials. At the beginning of an episode, ventral root potentials started before the VLF discharge and the firing of individual interneurons. However, pharmacological blockade of recurrent motoneuron collaterals did not prevent or substantially delay interneuron recruitment during spontaneous episodes. The synaptic connections of interneurons were examined by stimulating the VLF and recording the potentials evoked in the ventral roots, in the VLF, or in individual interneurons. Low-intensity stimulation of the VLF evoked a short-latency depolarizing potential in the ventral roots, or in interneurons, that was probably mediated mono- or disynaptically. At higher intensities, long-latency responses were recruited in a highly nonlinear manner, eventually culminating in the activation of an episode. VLF-evoked potentials were reversibly blocked by extracellular Co2+, indicating that they were mediated by chemical synaptic transmission. Collectively, these findings indicate that ventral interneurons are rhythmically active, project to motoneurons, and are likely to be interconnected by recurrent excitatory synaptic connections. This pattern of organization may explain the synchronous activation of spinal neurons and the regenerative activation of spinal networks when provided with a suprathreshold stimulus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nkx2.2+ Progenitors Generate Somatic Motoneurons in the Chick Spinal Cord

Heterogeneous classes of neurons are present in the spinal cord and are essential for its function. Expression patterns of transcription factors in neural progenitor cells determine neuron subtypes during development. Nkx2.2 is expressed in the progenitor cell pool located just ventrally to the Olig2-positive pool and is indispensable for V3 interneuron generation in the spinal cord and also fo...

متن کامل

Identification of an interneuronal population that mediates recurrent inhibition of motoneurons in the developing chick spinal cord.

Studies on the development of synaptic specificity, embryonic activity, and neuronal specification in the spinal cord have all been limited by the absence of a functionally identified interneuron class (defined by its unique set of connections). Here, we identify an interneuron population in the embryonic chick spinal cord that appears to be the avian equivalent of the mammalian Renshaw cell (R...

متن کامل

Ventrolateral Origin of Each Cycle of Rhythmic Activity Generated by the Spinal Cord of the Chick Embryo

BACKGROUND The mechanisms responsible for generating rhythmic motor activity in the developing spinal cord of the chick embryo are poorly understood. Here we investigate whether the activity of motoneurons occurs before other neuronal populations at the beginning of each cycle of rhythmic discharge. METHODOLOGY/PRINCIPAL FINDINGS The spatiotemporal organization of neural activity in transvers...

متن کامل

Mechanisms that initiate spontaneous network activity in the developing chick spinal cord.

Many developing networks exhibit a transient period of spontaneous activity that is believed to be important developmentally. Here we investigate the initiation of spontaneous episodes of rhythmic activity in the embryonic chick spinal cord. These episodes recur regularly and are separated by quiescent intervals of many minutes. We examined the role of motoneurons and their intraspinal synaptic...

متن کامل

Activity Blockade and GABAA Receptor Blockade Produce Synaptic Scaling through Chloride Accumulation in Embryonic Spinal Motoneurons and Interneurons

Synaptic scaling represents a process whereby the distribution of a cell's synaptic strengths are altered by a multiplicative scaling factor. Scaling is thought to be a compensatory response that homeostatically controls spiking activity levels in the cell or network. Previously, we observed GABAergic synaptic scaling in embryonic spinal motoneurons following in vivo blockade of either spiking ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 9  شماره 

صفحات  -

تاریخ انتشار 1999